Segmentation and Classification of 3D Urban Point Clouds: Comparison and Combination of Two Approaches
نویسندگان
چکیده
Segmentation and classification of 3D urban point clouds is a complex task, making it very difficult for any single method to overcome all the diverse challenges offered. This sometimes requires the combination of several techniques to obtain the desired results for different applications. This work presents and compares two different approaches for segmenting and classifying 3D urban point clouds. In the first approach, detection, segmentation and classification of urban objects from 3D point clouds, converted into elevation images, are performed by using mathematical morphology. First, the ground is segmented and objects are detected as discontinuities on the ground. Then, connected objects are segmented using a watershed approach. Finally, objects are classified using SVM (Support Vector Machine) with geometrical and contextual features. The second method employs a super-voxel based approach in which the 3D urban point cloud is first segmented into voxels and then converted into super-voxels. These are then clustered together using an efficient link-chain method to form objects. These segmented objects are then classified using local descriptors and geometrical features into basic object classes. Evaluated on a common dataset (real data), both these methods are thoroughly compared on three different levels: detection, segmentation and classification. After analyses, simple strategies are also presented to combine the two methods, exploiting their complementary strengths and weaknesses, to improve the overall segmentation and classification results.
منابع مشابه
3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملDetection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملمدلسازی صفحهای محیطهای داخلی با استفاده از تصاویر RGB-D
In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in f...
متن کامل